Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and β-catenin
نویسندگان
چکیده
Signaling by the Wnt family of extracellular proteins is critical in a variety of developmental processes in which cell and tissue polarity are established [1-5]. Wnt signal transduction has been studied mostly by the genetic approach in Drosophila and Caenorhabditis elegans [1,2,5], but the biochemical mechanisms involved remain to be elucidated. The Wnt pathway also operates during axis determination in vertebrates [3,5]. Frizzled receptors transduce a signal to Dishevelled, leading to inactivation of glycogen synthase kinase 3 (GSK3) and regulation of gene expression by the complex of beta-catenin with LEF/TCF (lymphocyte enhancer factor/T-cell factor) transcription factors [3,5]. Axin is a negative regulator of Wnt signaling and dorsal axial development in vertebrates [6]. Here, we demonstrate that axin is associated with GSK3 in the Xenopus embryo and we localize the GSK3-binding domain to a short region of axin. Binding of GSK3 correlates with the ability of axin to inhibit axial development and with the axis-inducing activity of its dominant-negative form (delta RGS). We also find that wild-type axin, but not delta RGS, forms a complex with beta-catenin. Thus, axin may act as a docking station mediating negative regulation of beta-catenin by GSK3 during dorsoventral axis determination in vertebrate embryos.
منابع مشابه
Xenopus axin interacts with glycogen synthase kinase-3 beta and is expressed in the anterior midbrain
Axin is encoded by the fused locus in mice and is required for normal vertebrate axis formation. It has recently been shown that axin associates with APC, beta-catenin and glycogen synthase kinase-3 (GSK-3) in a complex that appears to regulate the level of cytoplasmic beta-catenin. We have identified the Xenopus homologue of axin through its interaction with GSK-3b. Xenopus axin (Xaxin) is exp...
متن کاملInteraction among Gsk-3, Gbp, Axin, and APC in Xenopus Axis Specification
Glycogen synthase kinase 3 (GSK-3) is a constitutively active kinase that negatively regulates its substrates, one of which is beta-catenin, a downstream effector of the Wnt signaling pathway that is required for dorsal-ventral axis specification in the Xenopus embryo. GSK-3 activity is regulated through the opposing activities of multiple proteins. Axin, GSK-3, and beta-catenin form a complex ...
متن کاملInteraction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction.
Signaling by the Wnt family of secreted proteins plays an important role in animal development and is often misregulated in carcinogenesis. Wnt signal transduction is controlled by the rate of degradation of beta-catenin by a complex of proteins including glycogen synthase kinase 3 (GSK3), adenomatous polyposis coli, and Axin. Dishevelled is required for Wnt signal transduction, and its activat...
متن کاملDownregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β
Background: Inactivation of the adenomatous polyposis coli (APC) tumor suppressor protein is responsible for both inherited and sporadic forms of colon cancer. Growth control by APC may relate to its ability to downregulate β-catenin post-translationally. In cancer, mutations in APC ablate its ability to regulate β-catenin, and mutations in β-catenin prevent its downregulation by wild-type APC....
متن کاملβ-TrCP is a negative regulator of the Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos
The Wnt/b-catenin signaling pathway is responsible for the establishment of the dorsoventral axis of Xenopus embryos. The recent finding of the F-box/WD40-repeat protein slimb in Drosophila, whose loss-of-function mutation causes ectopic activation of wingless signaling (Jiang, J., Struhl, G., 1998. Nature 391, 493–496), led us to examine the role of its vertebrate homolog b-TrCP in Wnt/b-caten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998